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The von Neumann entropy for an electron in periodic, disorder, and quasiperiodic quantum small-world
networks (QSWN’s) is studied numerically. For the disorder QSWN’s, the derivative of the spectrum-averaged
von Neumann entropy is maximal at a certain density of shortcut links p*, which can be as a signature of the
localization-delocalization transition of electron states. The transition point p” is agreement with that obtained
by the level statistics method. For the quasiperiodic QSWN’s, it is found that there are two regions of the
potential parameter. The behaviors of electron states in different regions are similar to that of periodic and

disorder QSWN’s, respectively.
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I. INTRODUCTION

Recently the small-world networks (SWN’s) [1] have at-
tracted much attention since they can mimic social and bio-
logical networks, Internet connections, airline flights, and
other complex networks. Well-established classical models
have been numerically and analytically investigated, which
focused on the crossover behavior [2], the scaling properties
[3,4], the percolation of the dynamic processes [4] in the
model, etc. Very recently Zhu and Xiong have generalized
the SWN’s to a quantum version by regarding the bonds as
quantum hopping links for the motion of an electron and
investigated the localization-delocalization transition of elec-
tron states [5]. Until now the transition point has been found
only by using the level statistics method combined with the
finite-size scaling method [5-7]. However, the finite-size
scaling method is not suitable for SWN’s with high connec-
tions since the number of connections grows very rapidly
with the SWN size [7]. The level statistics method is suc-
cessful in the location of the metal-insulator transition in
disorder systems [8,9], but it is not suitable in quasiperiodic
systems because the level spacing distribution [10] cannot
always be written as the crossover of the Poisson distribution
and Wigner-Dyson distribution.

On the other hand, the connection between the entangle-
ment (such as von Neumann entropy) and localization prop-
erties of eigenstates has been revealed recently. By measur-
ing the von Neumann entropy, the local entanglement was
studied at the ground state in the Hubbard model for the
dimer case [11] and in the extended Hubbard model for dif-
ferent band fillings [12]. It is found that the von Neumann
entropy is suitable to describe quantum phase transitions [12]
and analyze the interplay between itinerant and localized fea-
tures [11].

In this paper, we study the von Neumann entropy for an
electron moving in periodic, random, and quasiperiodic
quantum small-world networks (QSWN’s), respectively. In
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periodic QSWN’s, there are no localization-delocalization
transitions because all eigenstates are extended. In random
QSWN’s, we find that the spectrum-averaged von Neumann
entropy is a suitable quantity to analyze the localization-
delocalization transition of electron states. Finally, we pro-
pose quasiperiodic QSWN'’s based on the one-dimensional
Harper model. With the help of von Neumann entropy, we
find that there are two regions of the potential parameter in
the model. The behaviors of electron states in different re-
gions are similar to that of periodic and disorder QSWN’s,
respectively.

The paper is organized as follows. In the next section we
describe the QSWN model and the measure of entanglement.
In Sec. III we present numerical results for different
QSWN’s. Finally, in Sec. IV, the conclusions are given.

II. MODEL AND VON NEUMANN ENTROPY

We consider a circular graph with N vertices. Each vertex
is linked with (direct connections) its two nearest neighbors.
To this graph, pN shortcut links (connecting 2pN vertices)
are additionally added between random pairs of vertices
without direct connections (Fig. 1) [4]. Here p is the density
of shortcut links.

The tight-binding Hamiltonian of an electron in QSWN’s
can be written as

H = HO + Hl N (1)
where
N N
Hy=12 (cfea + hyica) + 2 eache, (2)
n=1 n=1
and
pN N N
Hi=1,2 20 2 (clen+¢he) By O, (3)
k=1 n=1 m=1

Here ¢ is a nearest-neighbor hopping integral, cl (c,) the
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FIG. 1. An example of a small-world graph with vertices N
=32 and shortcut links pN=7.

dimensional tight-binding model. ¢, is the hopping integral
for shortcut links; {n;,m;} (here we impose the restriction
that n, <m,) are the pairs of vertices connected by a shortcut
link, and the number of all pairs is pN. Theoretically,
(PN) nax=N(N=3)/2. Here we only study small values of p.
Let |n) EC2;|0>; the general eigenstate of an electron is

N N
lay= 2 ¢ln) = 2 yello), (4)
n=1

n=1

where ¢, is the amplitude of wave function « at the nth site.

The general definition of entanglement is based on the
von Neumann entropy [13]. For an electron in the system,
there are two possible local states at each site, |1), and |0),,,
corresponding to the state with (without) an electron at the
nth site, respectively. The local density matrix p, is defined
[11,12] by

pn=Zn|1>nn<]| + (1 _Zn)|0>nn<0 ’ (5)
where z,=(a|c]c,|a)=|y|? is the local occupation number at
the nth site. The corresponding von Neumann entropy is

Eﬁn == 10g2 in— (1 - Zn)logZ(l - Zn) > (6)

which measures the entanglement of states on the nth site
with that on the remaining N—1 sites. It is called the local
entanglement for it exhibits correlations between a site and
all the other sites of the system [11,12]. Generally Ej, is a
function of n. We define the von Neumann entropy of system
at « eigenstate as

1 N
E*= NZ} E®. (7)

The definition (7) shows that for an extended state ¢/} = %] for
all n, Elﬁ“:—%, log, 1%—(1 —llv)logz(l —%V) a ﬁ log, N at N— o,
and for a localized state /=3,,0 (n° is a given site), E*=0.
In this paper all the values of E; and E;, are scaled by
]%,logz N. From the two examples, we know that the scaled
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FIG. 2. The spectrum-averaged von Neumann entropy (E,)
varying with p at different sizes N for periodic QSWN’s.

E; is near 1 when eigenstates are extended and near zero
when eigenstates are localized. Henceforth, we omit “scaled”
for simplicity.

As a further gross measure we also average over all the
eigenstates—i.e., the spectrum-averaged von Neumann en-

tropy
1 a
(E)=~ 2 Ey, (8)
where M is the number of all eigenstates.

III. NUMERICAL RESULTS

In our numerical calculations, the Hamiltonian is obtained
according to the formulas (1)—(3) for finite systems. The
shortcut terms are generated randomly based on formula (3).
We directly diagonalize the Hamiltonian and obtain N eigen-
values E, and corresponding eigenvectors |a). From the for-
mulas (5)—(8), we obtain the spectrum-averaged von Neu-
mann entropy (E,) for one realization of QSWN’s. The
results are averaged over many realizations of QSWN’s.

A. Periodic QSWN’s

For periodic QSWN’s, the on-site potential ¢, is assumed
to be uniform and set equal to zero. Without loss generality
and for simplicity, we set r=¢,=1 in all our numerical calcu-
lations. Figure 2 shows the spectrum-averaged von Neumann
entropy (E,) changing with p at N=500, 1000, and 1500,
respectively. Averages are done for 300, 200, and 100 ran-
dom configurations (positions of shortcut links) at N=500,
1000, and 1500, respectively. The results are similar for more
random configurations. From the figure, we can see that (E,)
is close to 1 for all p, which means that all states are ex-
tended and there is no localization-delocalization transition
in the systems. For p=0—i.e. in the absence of shortcuts—
the model is a one-dimensional periodic potential system.
The energy eigenstates are always extended due to the Bloch
theorem. The random shortcut terms can cause long-range
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FIG. 3. The spectrum-averaged von Neumann entropy (E,) (a),(c) and the derivative d{E,)/dp (b),(d) varying with p at different sizes N
for W=v40 (a),(b) and W=10 (c),(d), respectively. Lines in figures are polynomial fitted for corresponding data. The number of disorder
realizations (positions of shortcut links and on-site disorder potential) is 300, 200, 100, and 20 for N=500, 1000, 1500, and 3000,

respectively.

hopping and off-diagonal disorder effects. Long-range hop-
ping tends to delocalize the states; therefore, the extensive
properties of the eigenstates are not changed by the presence
of random shortcut terms. We also find there is small de-
creases of (E,) for very small p (p<0.05), which is due to
localization effects of the off-diagonal disorder caused by
random shortcut terms in the Hamiltonian.

B. Disordered QSWN’s

For disordered QSWN’s, the on-site potentials g, are ran-
dom variables homogeneously distributed with [-W/2;
W/2]. Here W characterizes the degree of on-site disorder as
in the Anderson model [14]. By using the level statistics
method, it has been found that a transition from Possion
statistics (localized phase) to Wigner-Dyson statistics (delo-
calized phase) takes place at p,~ 1/400(W/1)* for weak
disorder; i.e., W/t is small [6].

In Fig. 3 we show the spectrum-averaged von Neumann
entropy (E,) and the derivative d(E,)/dp varying with p for
W=140 and W=10 at different N, respectively. From 3 (A)
and (C), it is clear that (E,) monotonically increases as p
becomes larger. When p=0, the model is a one-dimensional
Anderson model [14]. For the model all states are localized,
so (E,) are small ((E,)=0.3 and 0.2 at W=40 and 10, re-
spectively). When p is large, delocalized states will be
present due to the long-range hopping and (E,) becomes
large. From Figs. 3(b) and 3(d), it is found that the derivative
d{(E,)/dp is maximal at p*~0.1-0.15 and 0.25-0.3 at W

=40 and W=10, respectively. The p” is agreement with the
localization-delocalization transition point p. obtained by the
level statistics method (p,~0.1 at W=v40 and p,~0.25 at
W=10) [6]. It is clear that the transition from the localized
phase to the delocalized phase can also be reflected from
d(E,)/dp. Therefore the von Neumann entropy is a suitable
quantity to analyze localized properties of electron states for
QSWN’s.

C. Quasiperiodic QSWN’s

After the experimental discovery of the quasicrystals [15]
and one-dimensional quasiperiodic superlattices [16], many
experimental and theoretical works have been carried out on
the physical properties of quasiperiodic systems [17-23]. Al-
though these systems lack translational invariance, they are
perfectly ordered. In this sense, such systems can be re-
garded as intermediate between periodic and random sys-
tems. One of the most popular quasiperiodic systems is the
Harper model. In the following, we propose a quasiperiodic
QSWN based on the Harper model and study the properties
of the eigenstates of an electron in this system.

For the Harper quasiperiodic QSWN’s, we choose ¢,
=\ cos(27ron) and o is irrational. The potential is incom-
mensurate with the underlying vertices. At p=0 the model is
in fact the one-dimensional well-studied Harper model [17].
Intensive analytical and numerical studies [17-23] for the
Harper model show that for A <2 the spectrum becomes con-
tinues and all eigenstates are extended. For A>2 the spec-
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FIG. 4. The spectrum-averaged von Neumann entropy (E,)
varying with N\ at different shortcut link numbers L. Here N=987
and the number of random configurations (positions of shortcut
links) is 200.

trum is pure point and all eigenstates are exponentially local-
ized. For A=2 the situation gives the metal-insulator
transition at which the eigenstates are neither extended nor
localized but critical with a singular-continuous multifractal
spectrum. _

As a typical case, we take o=(V5-1)/2. In fact, as is
customary in the context of quasiperiodic systems, the value
of o may be approximated by the ratio of successive Fi-
bonacci numbers: F,=F,_,+F,_;. In this way, choosing o
=F, /F,~(5-1)/2 and system size N=F,, we can obtain
the periodic approximant for the quasiperiodic potential [23].

In Fig. 4, we plot the spectrum-averaged von Neumann
entropy (E,) varying with \ for different shortcut link num-
bers L (here L=pN). For L=0, (E,) is large at A <2, while
small at A >2. There is a sharp decrease in (E,) for A\=2; i.e.,
the absolute value of d(E,)/dp is maximal at A=2, so the
metal-insulator transition can be reflected from (E,). When L
is small (L <20), those varying properties of (E,) are similar
to that for L=0, which means that at small L, the quasiperi-
odic on-site potentials rather than shortcut links play an im-
portant role. When L is large (L=100), the decrease in (E,)
at A=2 is not so sharp as that for L<20. When L is large
enough (for example, L=50 000), (E,) is almost same for all
N. In this situation the SWN’s form almost completely a
random graph and the on-site potential is not important.

For \ <2, the varying properties of (E,) with p are similar
to that of periodic QSWN’s. In Fig. 5, A=1 is given as an
example. It shows that on the whole, for all p, (E,) is near 1,
which means all states are extended.

For \>2, the varying properties of (E,) and the deriva-
tive d(E,)/dp with p are similar to those for disorder
QSWN’s. In Fig. 6, A=3 and 5 are examples. The spectrum-
averaged von Neumann entropy (E,) and the derivative
d(E,)/dp with different p are shown in Figs. 6(a) and 6(b),
respectively. It shows that (E,) monotonically increases as p
increases. The derivative d(E,)/dp is maximal at p*~0.12
and 0.4 at A=3 and 5, respectively, so the localization-
delocalization transition happens at p”*. This also can be cer-
tified by the level statistics method.

To understand the effect of shortcut links clearly, in Figs.
7(a), 7(b), and 7(c) we plot the average von Neumann en-
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FIG. 5. The spectrum-averaged von Neumann entropy (E,) as a
function of p at A=1 for different system sizes. The number of
random configurations (positions of shortcut links) is 500, 300, and
200 for N=144, 377, and 987, respectively.

tropy (E,) of the individual eigenstates at A\=1, 2, and 3 for
L=0, 20, and 100, respectively. When A=1, at L=0 all (E})
are large (near 1), which corresponds to the fact that all
eigenstates are extended. At L=20, the subband created by
the shortcut links lies below the band bottom, above the band
top, and at the band gap of that for L=0. In those newly
created subbands, (Eff) are obviously small compared to that
for L=0, which means shortcut links can produce localized

1
0.8

0.6

>
L

V04

FIG. 6. The spectrum-averaged von Neumann entropy (E,) and
d(E,)/dp varying with the density of shortcut links p for (a) and
(b), respectively. Lines in the figure are polynomial fitted for the
corresponding data. Here N=987 and the number of random con-
figurations (positions of shortcut links) is 200.
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FIG. 7. Average von Neumann entropy (E;) of the individual eigenstate as functions of eigenenergies at L=0, 20, and 100 for (a) A
=1, (b) N\=2, and (c) A=3, respectively. For L>0, the (E;’) values for six random configurations (positions of shortcut links) of quasiperiodic

QSWN’s are plotted together. Here N=987.

states at the case. As L increases to 100 and the long hopping
becomes more and more important, on the whole (E;“) in the
newly created subbands are larger than that for L=20. When
A=3, at L=0 all (E})) are small comparing to that for A\=1 at
L=0, which corresponds to the fact that all eigenstates are
localized. At L>0, (E;) for most eigenstates are large com-
pared with that at L=0. In this situation the long hopping due
to shortcut links is important and makes many states more
extended than that at L=0. When A=2, at L=0 the eigen-
states are critical with a singular-continuous multifractal
spectrum. In this situation some eigenstates have large (E;))
and some have small (E}). At L=20, (E;) become larger at
some eigenstates and smaller at some eigenstates due to the
shortcut links. The spectrum-averaged von Neumann entropy
(E,) changes little. At L=100, the long hopping becomes
important and leads to many eigenstates having large (E;)
compared to that for L=20.

IV. CONCLUSIONS

In detail, we study von Neumann entropy in periodic and
disorder QSWN’s and find it is a suitable quantity to reflect
the localization-delocalization transition of electron states.
Then we propose a quasiperiodic QSWN based on the one-
dimensional Harper model and investigate it intensively by

the measure of von Neumann entropy. In the model, the qua-
siperiodic on-site potential, the long-range hopping, and off-
diagonal disorder due to random shortcut links determine the
localization properties of electron states. Those lead to the
conculsion that the influence of shortcut links on the von
Neumann entropy is different at two \ regions (A\<<2 and
N>2). We found that when A <2, on the whole, for all p,
(E,) is near 1, which means all states are extended. When
A>2, it monotonously increases as p is increased. Those can
be understood from varying the average von Neumann en-
tropy (E,) of the individual eigenstates with X and the num-
ber of shortcut links. Especially, at A\>2 we find that there
exists a localization-delocalization transition of electron
states reflected from the von Neumann entropy. In a word,
the varying of (E,) with p is similar to that for periodic
QSWN’s at A <2 and similar to that for disorder QSWN’s at
A>2.
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